The kinetic energy of a body determines it's level of impact on the object in which it comes in contact with. Hence, the much larger kinetic energy exhibited by a wrecking ball compared to a yo-yo means that is has a much larger impact on a building than a yo-yo.
Kinetic Energy = 0.5mv²The kinetic energy of a body is a factor of it's velocity and mass as they are directly proportional.
The wrecking ball has a very large mass which is thousands of times larger than that of a yo-yo. Also, the velocity at which a wrecking ball is launched is higher than the velocity of a yo-yo.
This means that the kinetic energy of a wrecking ball is much higher than that of yo-yo. Hence, having much greater impact on a building compared to a yo-yo.
Learn more :https://brainly.com/question/18565597
I’ll give brainliest
The waveform of a signal is the shape of its graph as a function of time in the domains of electronics, acoustics, and allied sciences, regardless of its time and magnitude scales or any shift in time.
Thus, Waveforms with periodic variations are those that recur consistently at set intervals.
The phrase is typically used in electronics to describe periodically changing voltages, currents, or electromagnetic fields. It is typically used in acoustics to describe constant periodic sounds caused by changes in air pressure or other media.
In these situations, the signal's frequency, amplitude, or phase shift have no bearing on the waveform, which is a characteristic. Additionally, non-periodic signals like chirps and pulses can be referred to by this name.
Thus, The waveform of a signal is the shape of its graph as a function of time in the domains of electronics, acoustics, and allied sciences, regardless of its time and magnitude scales or any shift in time.
Learn more about Waveform, refer to the link:
https://brainly.com/question/31528930
#SPJ1
What is the mass of a box with a weight of 600 N ?
61.2 kg
600 kg
612 kg
200 kg
Answer:
A
Explanation:
F = m * a
F = 600 N
a = 9.81 m/s^2
600 = m * 9.81
m = 600 / 9.81
m = 61.2
A
Answer:
61.2 Kilograms
Explanation:
You take your Newtons(600) divided by the force of gravity (9.8 N) to get your mass (61.2Kg)
If m1= 5 kg and m2 = 5 kg, wat would be a? (g = 10 m/s/s)
A.5m/s/s
B.10m/s/s
C.8m/s/s
D.6m/s/s
Answer:
a = 3.9m/s ²
Explanation:
The diagram is as shown
From the diagram, we can set up a simultaneous equation as shown;
T - F = m1a
W - T = m2a
Add both equation
-F + W = (m1 + m2)a
F is the frictional force
W is the weight
a is the acceleration
Let F = 10N since we are not given'
-10 + 5(9.8) = (5+5)a
-10 + 49 = 10a
39 = 10a
a = 39/10
a = 3.9m/s ²
Note that the frictional force was assumed
Answer #49 please and thank you
when Force (N) is 10.0 Length (m) is 0.60
when Force (N) is 8.0 Length (m) is 0.40
when Force (N) is 4.0 Length (m) is 0.20
when Force (N) is 4.0 Length (m) is 0.20
when Force (N) is 2.0 Length (m) is 0.10
chatgpt
49. To find the length of a pendulum that has a period of 2.3 seconds on the Moon, where the gravitational acceleration (g) is 1.6 N/kg, we can use the formula:
Period (T) = 2π√(Length (L) / g)
Substituting the given values:
2.3 = 2π√(L / 1.6)
To solve for L, we can rearrange the formula:
L = (2.3 / (2π))^2 * 1.6
L ≈ 0.781 meters (or 78.1 centimeters)
So, the pendulum must be approximately 0.781 meters (or 78.1 centimeters) long to have a period of 2.3 seconds on the Moon.
50. Ranking Task:
To rank the pendulums according to their periods, we need to consider both the length and mass of each pendulum.
Ranking from least to greatest period:
1. A: 10 cm long, mass = 0.25 kg
2. C: 20 cm long, mass = 0.25 kg
3. B: 10 cm long, mass = 0.35 kg
There is a tie between pendulums A and C, as they have the same length but different masses.
What is the mass of an object if a force of 17 N causes it to accelerate at 1.5 m/s/s?
Answer:
11.34 i think
Explanation:
Two equal and opposite charges are placed 40mm apart,if the force between them is found to be 0.5N Calculate the magnitude of the charge
A jar of tea is placed in sunlight until it reaches an equilibrium temperature of 33.1 ◦C . In an attempt to cool the liquid, which has a mass of 185 g , 90.3 g of ice at 0.0 ◦C is added. At the time at which the temperature of the tea is 26.3 ◦C , find the mass of the remaining ice in the jar. The specific heat of water is 4186 J/kg · ◦ C . Assume the specific heat capacity of the tea to be that of pure liquid water. Answer in units of g.(2 significant digits pls)
90.1 g of ice are still present in the container. Calculating the heat received by the ice to melt and the heat lost by the tea is necessary until it reaches an equilibrium temperature of 33.1 ◦C .
How do you calculate the amount of heat needed to melt ice?Consider how much energy is required to melt one kilogramme of ice at zero degrees to produce one kilogramme of water at zero degrees. The energy required to melt one kilogramme of ice is determined by Q = mLf = (1.0 kg)(334 kJ/kg) = 334 kJ using the equation for a change in temperature.
In order to calculate how much heat is gained by the ice melting, we must first calculate how much heat is lost by the tea as it cools from 33.1 °C to 0.0 °C.
Tea loses the following amount of heat: q1 = m1CT1 = 0.185 kg) (4186 J/kg C) (33.1 C - 0.0 C) = 26298.93 J.
Heat required for ice to melt is given by the formula: q2 = m2Hf = (0.0903 kg)(333.55 kJ/kg) = 30062.56 J
We may set q1 = q2 to get the mass of ice still present because the system is in thermal equilibrium:
m2 = q2/Hf = 333.55 kJ/kg / 30062.56 J = 0.0901 kg
Finally, we round the mass to two significant digits and convert it to grammes:
m2 = 90.1 g
To know more about equilibrium visit:-
https://brainly.com/question/30807709
#SPJ1
24. A body A rests on a smooth horizontal table. Two bodies of mass 2 kg and 10 kg hanging freely, are attached to A by strings which pass over smooth pulleys at the edges of the table. The two strings are taut. When the system is released from rest, it accelerates at 2 m/s2 . Find the mass of A.
The two strings are taut. When the system is released from rest, it accelerates at 2 m/s2 then, Mass of A = 8m/5 kg.
Let the mass of the body A be ‘m’.
The two strings are taut so they exert a tension ‘T’ on body A.
Let ‘a’ be the acceleration produced in the system.
The free body diagram of body A is given below: mA + 2T = mA + ma = mA + m(2)mA + 10T = mA + ma = mA + m(2)
As the two strings are taut, we can say that tension in both strings is equal.
Therefore 2T = 10T or T = 5T As the body A is resting on a smooth horizontal table, there is no friction force acting on the body A.
The net force acting on body A is the force due to tension in the strings. ma = 2T – mg …(1)
As per the given problem, the system is released from rest.
Hence the initial velocity is zero.
Also, we are given that the system accelerates at 2 m/s2.
Therefore a = 2 m/s2 …(2)
From the equations (1) and (2), we get, m(2) = 2T – mg …(3)⇒ m(2) = 2×5m – mg⇒ 2m = 10m – g⇒ g = 8m/5
Thus, the mass of A is 8m/5 kg.
Answer: Mass of A = 8m/5 kg.
For more questions on Mass
https://brainly.com/question/28853889
#SPJ8
What is the reactive force when a fish swims through water
The reactive force when a fish swims through water is the force of the water on the fish. This is an example of Newton’s third law of motion which states that for every action, there is an equal and opposite reaction. The active force is the fish pushing against the water, so the reactive force would be the reverse, the equal force of the water pushing back on the fish.
Suppose a radio signal (light) travels from Earth and through space at a speed of 3 × 108/ (this is the speed of light in vacuum). How far (in meters) into space did the signal travel during the first 10 minutes?
Answer:
18*10^10 meters
Explanation:
V= d/t 10 mins = 600 seconds
3*10^8 = d/600s
(3*10^8)*(6*10^2) = d
d = 18*10^10 m
Lana's class is studying the various kinds of energy found on a playground
Which of the following would be the BEST way to test for an equal transformation of energy on a playground?
СА
Using the slide, Lana could measure her kinetic energy when she was climbing up the ladder, measure her potential energy before she slid down, and her total energy used at the bottom of the slide. If the amount of potential
energy and kinetic energy added up to equal the total amount of energy used, it would show an equal transformation of energy
OB
Using the slido, Lana could measure her potential and kinetic energy sitting at the top of the slide, and then she could measure her kinetic and potential energy at various points while sliding to the bottom of the total value of
her potential energy and her kinetic energy were equal at every measuremont, it would show that there had been an equal transformation
C
Using the swing, Lana could measure her potential energy when she was sitting still on the swing, and she could measure her kinetic energy when the swing was in motion. If the kinetic energy was twice the amount of her
potential energy, it would show there had boon an equal transformation of potential energy to kinetic energy
D
Using the soesaw, Lana could measure her potential energy when she was in motion, and she could measure her kinetic energy when she was resting. If her kinetic and potential energy were equal, it would show that there
had been an equal transformation
If the amount of potential energy and kinetic energy added up to equal the total amount of energy used, it would show an equal transformation of energy.
What is Energy?This can be defined as the ability or capacity to do work. The potential and kinetic energy equals the total amount of energy involved when Lana was on the playground.
This depicts an equal transformation of energy which is why the most appropriate choice in this scenario is option A.
Read more about Energy here https://brainly.com/question/582060
If a gas turned into a solid without going through the liquid state and how do you reverse it?
Answer:
put it in a volcano
Explanation:
Please help me
Explain why driver age 16-18 are most likely to be involved in traffic accidents
Answer:Lack of experience.
Explanation:
Research from the CDC points to a few key reasons teen drivers are likely to be involved in car accidents: Lack of experience. Teen drivers have triple the fatal crash risk of older drivers, in part because they do not have the skills to recognize and avoid road hazards.
what does it mean to have a velocity of 10 m/s?
In Figure, a bird changes direction in 2.8 s while flying from point 1 to point 2. Determine the bird’s average acceleration. Hint: Use component method.
In Figure, a bird changes direction in 2.8 s while flying from point 1 to point 2. The bird’s average acceleration is 0.55 m/\(s^{2}\) . This is done by component method.
What is component method ?To calculate the overall length of the horizontal side of the right triangle, this usually entails summing all the horizontal components. and calculating the overall length of the right triangle's vertical side by adding all of its vertical components.
change in speed of bird = (8.5-6.4) m/s = 2.1 m/s
average acceleration = \(\frac{change in speed}{change in time}\)
change in time = 2.8 seconds
assigning values ,
average acceleration = 0.55 m/s
to know more about component method , visit;
brainly.com/question/19032732
#SPJ1
Which of following is true statement of self-efficiency
Explanation:
Which of the following best defines self-efficacy? The belief in one's ability to cause an intended event to happen. ... If Bobby does not value athletic skill, his lack of talent will have less impact on his self-esteem than if he highly values athleticism.
130 lb to N plz help me
Please choose one of the following topics and write a short summary of the concept (50-100 words). Please ask a question about the chosen topic.
Topic Chosen: DARK MATTER / DARK ENERGY
The short summary of the concept of dark matter and dark energy is given here.
What is dark matter?An estimated 85% of the universe's mass is assumed to be made up of dark matter, a hypothetical type of stuff. Because it does not appear to interact with the electromagnetic field—that is, it does not absorb, reflect, or emit electromagnetic radiation—dark matter is referred to as being "dark," making it challenging to detect.
Numerous astrophysical observations support the existence of dark matter, including gravitational effects that cannot be described by the gravity theories currently in use without the presence of more matter than can be observed. Because of this, the majority of scientists believe that dark matter is prevalent in the universe and has significantly influenced both its structure and evolution.
What is dark energy?Dark energy is an undiscovered type of energy that has the largest effects on the cosmos according to physical cosmology and astronomy. Supernova observations provided the first direct proof for its existence by demonstrating that the cosmos is expanding faster than ever rather than at a fixed rate. It is necessary to understand the universe's origins and initial elements in order to comprehend its evolution.
Learn more about dark matter here:
https://brainly.com/question/29265929
#SPJ1
The first P-wave of an earthquake travels 5600 kilometers from the epicenter and arrives at a seismic station at 10:05 a.m. At what time did this earthquake occur?
Ahhhhhh I have a Regent's test in 2 hours and I don't know how to solve this type of question! Any help would be appreciated.
Anyone know what the steps to do this are? I dont even need an answer, just how to get to it. Thank you!
The earthquake would occur 13 minutes before 10:05 a.m. which will be at 9.52 am.
The p-waves travel with a constant velocity of 7 km/s
The time can be calculated by using the formula
t = d / v
where
T1 = 10:05 a.m
d is the distance they take to travel from the epicenter
v is the speed of the p-waves
On average, the speed of p-waves is
v = 7 km/s
d = 5600 km (given)
Substituting the values in the formula;
t = d / v
t = 5600 ÷ 7
t = 800 seconds
Converting into minutes,
t = 800 ÷ 60
t = 13.3
≈ 13 mins
T1 - 13 mins = T2
10:05 - 13 mins = 9.52 am
It means the earthquake occurred prior 13 minutes, that is at 9.52 am.
Therefore, the earthquake occurred at 9.52 am.
Learn more about earthquakes from the given link.
https://brainly.com/question/25843505
what are the advantages and disadvantages of specific heat capacity
Answer:
Explanation:
what are the advantages and disadvantages of specific heat capacity
(Figure 1) is the potential-energy diagram for a 500 g particle that is released from rest at A . What is the particle's speed at B ?
Answer:
Explanation:
according to the graph at B the potential energy of the particle is 2J
therefore we can use the kinetic energy equation to calculate the particle's velocity or speed.
\(E_{k} =1/2mv^{2}\)
2J= 1/2*1/2kg*v^2
8=v^2
v= 2√2 ms-1
Please show the work on the answer that is
6m/s^2
Answer:
a = 6 m/s²
Explanation:
Force is the product of mass and acceleration. That means acceleration can be found from the net force and the mass:
F = ma
a = F/m
The net force on the block is the sum of all of the forces. If forces to the right are taken as positive, we have ...
a = (3N +8N +6N -5N)/(2 kg) = (12 N)/(2 kg) = 6 N/kg
a = 6 m/s²
_____
Additional comment
A newton is a derived unit equal to ...
N = kg·m/s²
so the ratio N/kg has units m/s², acceleration.
A bike accelerates from 0 m/s to 15 m/s over the span of 5 seconds. How fast is the bike
traveling after 2.5 seconds?
The bike is travelling at 22.5 m/s after 2.5 s
What is acceleration?This is defined as the rate of change of velocity which time. It is expressed as
a = (v – u) / t
Where
a is the acceleration v is the final velocity u is the initial velocity t is the time How to determine the acceleration Initial velocity (u) = 0 m/sFinal velocity (v) = 15 m/sTime (t) = 5 sAcceleration (a) =?a = (v – u) / t
a = (15 – 0) / 5
a = 3 m/s²
How to determine the final velocity in the first 2.5 s Initial velocity (u) = 15 m/sAcceleration (a) = 3 m/s²Time (t) = 2.5 s Final velocity (v) = ?a = (v – u) / t
3 = (v – 15) / 2.5
Cross multiply
v – 15 = 3 × 2.5
v – 15 = 7.5
Collect like terms
v = 7.5 + 15
v = 22.5 m/s
Learn more about acceleration:
https://brainly.com/question/491732
#SPJ1
Part F
Imagine you were a sportscaster at the Olympics. You'd created a mathematical model similar to the one you just did. Imagine that you had a
computer program that could do an instantaneous analysis of video motion using that model. How could you use it in your sportscast?
A program that could do an instantaneous analysis of video motion will be useful it in a sportscast to analyze events as they occur.
Why will a program be needed?A motion video is defined as the display of video images at a rate (such as thirty frames per second) that causes objects to appear to move smoothly and continuously.
Sports inherently involve fast and accurate motion, which can be difficult for competitors to master but also for coaches and trainers to analyze and audiences to follow. Because of the nature of most sports, monitoring with sensors or other devices attached to players or equipment is generally not possible. This opens up a plethora of opportunities for the use of computer vision techniques to assist competitors, coaches, and the audience
Learn more about motion on:
https://brainly.com/question/27802581
#SPJ1
A block with mass M slides down an incline of angle θ at constant velocity v.
Which of the following expressions is equal to the magnitude of frictional force between the block and the incline? (Note: The acceleration of gravity g = 10 m/s2.)
A.M∙g∙sin θ
B.M∙g∙cos θ
C.M∙g / sin θ
D.M∙g / cos θ
Mgsin, As a result, at a state of dynamic equilibrium, the frictional force exerted on a mass sliding down an incline is proportional to the object's weight times the sine of the incline angle.
What are velocity and speed?In contrast to velocity, which describes the speed and direction of such an object's movement, speed is the speed of moves along a path. Alternatively, velocity is a vector while speed is a scalar quantity.
Is speed also known as velocity?A motion or activity has velocity when it moves quickly. Another term for speed is celerity, which is also a synonym. The measurement of an object's rate and direction of positional change is known as its velocity in physics.
To know more about Velocity visit:
https://brainly.com/question/18084516
#SPJ4
What type of circuit is in the diagram?
b
O series circuit
O parallel circuit
PLEASE HELPPP
Two identical billiard balls are rolling toward each other at the same speed. What will be true after they collide head–on?
Answer:
They will be moving away from each other at the same speed.
Explanation:
The final speed may be identical to the initial speed if the collision is perfectly elastic. The final speed will be zero if the collision is perfectly in-elastic.
In all likelihood, the final speed will be slightly slower than the initial speed.
A machine part consists of three heavy disks linked by struts of negligible weights as shown in the figure. Calculate the moment of inertia of the body about an axis through the centre of disk A and the kinetic energy, if the body rotates about an axis through A perpendicular to the plane of the diagram, with angular speed ω = 6.0 rads-1..
if the values of mass (m) and radius (R) are provided, the moment of inertia of the body about an axis through the center of disk A can be calculated as (3/2) * m * R^2, and the kinetic energy of the rotating body would be 162 * m * R^2 Joules.
To calculate the moment of inertia of the body about an axis through the center of disk A, we need to consider the moment of inertia contributions from each individual disk and add them up.
Let's denote the moment of inertia of each disk as I_A, I_B, and I_C, respectively. The moment of inertia of a disk rotating about its center can be calculated using the formula:
I = (1/2) * m * r^2
Where m is the mass of the disk and r is its radius.
Since the struts have negligible weight, we can assume that each disk has the same mass.
Let's assume the mass of each disk is m and the radius of each disk is R.
The moment of inertia of disk A (I_A) is given by:
I_A = (1/2) * m * R^2
The moment of inertia of disk B (I_B) and disk C (I_C) will be the same since they have the same mass and radius:
I_B = I_C = (1/2) * m * R^2
The total moment of inertia of the body about the axis through the center of disk A (I_total) is the sum of the individual moment of inertias:
I_total = I_A + I_B + I_C
= (1/2) * m * R^2 + (1/2) * m * R^2 + (1/2) * m * R^2
= (3/2) * m * R^2
To calculate the kinetic energy of the rotating body, we can use the formula:
Kinetic Energy = (1/2) * I_total * ω^2
Substituting the given values:
Kinetic Energy = (1/2) * ((3/2) * m * R^2) * (6.0 rad/s)^2
Simplifying further, if the values of m and R are given, we can calculate the moment of inertia and kinetic energy.
Assuming that the values of mass (m) and radius (R) are given, we can calculate the moment of inertia (I_total) and kinetic energy.
For the given values of ω = 6.0 rad/s and the previously calculated I_total:
I_total = (3/2) * m * R^2
Kinetic Energy = (1/2) * I_total * ω^2
= (1/2) * [(3/2) * m * R^2] * (6.0 rad/s)^2
= (9/2) * m * R^2 * (36.0 rad^2/s^2)
= 162 * m * R^2 Joules
Therefore, if the values of mass (m) and radius (R) are provided, the moment of inertia of the body about an axis through the center of disk A can be calculated as (3/2) * m * R^2, and the kinetic energy of the rotating body would be 162 * m * R^2 Joules.
To learn more about the moment of inertia click:
brainly.com/question/29415485
#SPJ1
A 35.30-kg box is attached to a light string that is wrapped around a cylindrical frictionless spool of radius 10.0 cm and moment of inertia 4.00 kg * m^2. The spool is suspended from the ceiling, and the box is then released from rest a distance from rest a distance 3.50 m above the floor. How long does it take for the box to reach the floor?
Answer:
The velocity of the box is related to the angular velocity of the spool, which is given by the equation:
v = r * ω
where r is the radius of the spool and ω is the angular velocity of the spool. The angular velocity of the spool, in turn, is related to the torque applied to the spool by the tension in the string, which is given by the equation:
τ = I * α
where τ is the torque, I is the moment of inertia of the spool, and α is the angular acceleration of the spool.
The tension in the string is equal to the weight of the box, which is given by:
T = m * g
Putting all of these equations together, we can solve for the time it takes for the box to reach the floor. Here's how:
First, we can find the angular acceleration of the spool using the torque equation:
τ = I * α
T = m * g = τ
m * g = I * α
α = (m * g) / I
α = (35.30 kg * 9.81 m/s^2) / 4.00 kg*m^2
α = 86.53 rad/s^2
Next, we can find the angular velocity of the spool using the kinematic equation:
ω^2 = ω_0^2 + 2 * α * θ
where ω_0 is the initial angular velocity (which is zero), θ is the angle through which the spool has turned (which is equal to the distance the box has fallen divided by the radius of the spool), and ω is the final angular velocity (which is what we want to find). Solving for ω, we get:
ω^2 = 2 * α * θ
ω = sqrt(2 * α * θ)
ω = sqrt(2 * 86.53 rad/s^2 * (3.50 m / 0.10 m))
ω = 166.6 rad/s
Finally, we can find the time it takes for the box to reach the floor using the equation:
v = r * ω
v = 0.10 m * 166.6 rad/s
v = 16.66 m/s
t = d / v
t = 3.50 m / 16.66 m/s
t = 0.21 s
Newton's Third Law of Motion
Answer:
Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts
Explanation:
Answer: According to Khan Academy "Newton's third law: If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A.
Explanation: This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself. We sometimes refer to this law loosely as action-reaction, where the force exerted is the action and the force experienced as a consequence is the reaction.
We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off from the side of a pool, as illustrated below.
A swimmer pushes on the wall with her feet, which causes the wall to push back on her feet due to Newton's third law."
Hope this helps ^_^ and have a great day