Usually, we use sampling when a population is hard to study, for some reason.
Sampling is a technique commonly employed in research and statistics when it is impractical or impossible to study an entire population directly. It involves selecting a subset, or sample, from the population and using the information gathered from the sample to make inferences about the entire population. This is done with the assumption that the sample is representative of the population and that the findings from the sample can be generalized to the larger population.
There are several reasons why a population might be difficult to study comprehensively. One reason is the size of the population. For example, if the population of interest is the entire world or a country, it would be practically impossible to study each individual in the population due to logistical constraints and limited resources. In such cases, sampling allows researchers to gather information from a smaller, manageable subset of the population.
Another reason for using sampling is when the population is dispersed or geographically scattered. If the population is spread out across a wide area, it can be challenging and costly to reach and collect data from every individual. Sampling allows researchers to select representative individuals or clusters from different regions, making data collection more feasible.
Additionally, there are cases where the population is inaccessible or hard to reach due to privacy concerns or ethical considerations. For example, if the population consists of individuals with certain medical conditions or sensitive personal information, it may be challenging to obtain consent or access to the entire population. In such cases, researchers can use sampling methods to obtain data from a subset of individuals who are willing to participate and meet the necessary criteria.
In summary, sampling is a valuable tool when studying populations that are hard to access, too large, or dispersed. It allows researchers to gather relevant data from a representative subset of the population and make valid inferences about the larger population, despite the challenges posed by studying the population as a whole.
For more such information on: sampling
https://brainly.com/question/13219833
#SPJ8
The question probable may be:
Usually, we use when a population is hard to study, for some reason.
Which diagram is the best model for a solid?
Substance A
Substance B
О Substance C
Answer:
This link was diagram
Explanation:
https://doubtnut.app.link/FnsNC80Dccb
write down the value of
920 kg in g
Answer:
920000
Explanation:
Each kg contains 1,000 grams
wire (mass = 50 g, length = 40 cm) is suspended horizontally by two vertical wires which
conduct a current I = 8.0 A, as shown in the figure. The magnetic field in the region is into the
paper and has a magnitude of 60 mT. What is the tension in either wire?
The magnetic field in the region is into the paper and has a magnitude of 60 mT and the tension in either wire is 0.096 N.
To find the tension in either wire, we can apply the equation for the force experienced by a current-carrying wire in a magnetic field.
The force experienced by a current-carrying wire in a magnetic field is given by the equation F = B * I * L * sin(θ), where B is the magnetic field strength, I is the current, L is the length of the wire, and θ is the angle between the wire and the magnetic field.
In this case, the wire is suspended horizontally by two vertical wires, and the magnetic field is into the paper. Since the wire is horizontal, the angle between the wire and the magnetic field is 90 degrees, so sin(θ) = 1.
The force experienced by the wire due to the magnetic field is F = B * I * L.
Given:
Current (I) = 8.0 A
Magnetic field (B) = 60 mT = 60 * 10^(-3) T
Length of the wire (L) = 40 cm = 40 * 10^(-2) m
Substituting the given values into the equation, we get:
F = (60 * 10^(-3) T) * (8.0 A) * (40 * 10^(-2) m)
Simplifying the expression, we find:
F = 0.192 N
Since the wire is suspended by two vertical wires, the tension in each wire will be half of the total force. Therefore, the tension in either wire is 0.192 N / 2 = 0.096 N.
Know more about magnetic field here:
https://brainly.com/question/14411049
#SPJ8
Mark and Nancy both take three measurements of the length of a pencil that is 15.1 cm. Mark records 15.0, 15.0, and 15.1 cm. Nancy records 15.1, 15.2, and 15.2 cm. Which of the following statements is true about Mark and Nancy's measurements?
A. Mark's measurement is more precise.
B. Nancy's measurement is more accurate.
C. Mark's measurement is more accurate.
D. Both sets of measurements are equally accurate and precise.
A projectile is fired into the air at an angle of 50° above ground level and hits a target downrange. Neglecting air drag, it will also hit the target if fired at the same speed at an angle of
Answer:
18 m/s
Explanation:
Range of a projectile on level ground is:
R = v₀² sin(2θ) / g
14.3 m = v₀² sin(2×13°) / 9.8 m/s²
v₀ = 17.9 m/s
Rounded to two significant figures, the launch speed was 18 m/s.
If the bullet is launched at an angle of 50 degrees above ground level, the target will be struck. The angle remains the same. The launch angle obtained is 50 degrees.
Given:
The initial shot was fired at an angle of 50 degrees above ground.
The projectile's starting velocity (v) and magnitude of velocity will remain constant if it is shot at the same pace.
Let the angle of the projectile is x,
The horizontal component of velocity can be calculated as follows:
\(v(x) = v * cos(x)\)
We can write:
since the horizontal part of velocity remains constant:
\(v(x1) = v(x2)\)
\(cos(50) = cos(x)\)
\(50 = x\)
Therefore, if the projectile is launched at the same speed at a 50° angle above ground level, it will strike the target.
To know more about the projectile:
https://brainly.com/question/13388411
#SPJ4
The correct response is given when the angle is asked a question.
Question 3 of 15
Which of the following statements are not true about gravity? Check all that
apply.
A. Gravity exists in the whole universe.
B. Gravity exists only on Earth.
C. Gravity is a force that pulls two objects together.
D. Gravity exists between two objects that have mass.
E. Gravity doesn't exist between Earth and the sun.
The statement "B. Gravity exists only on Earth" and the statement "E. Gravity doesn't exist between Earth and the sun" is not true about gravity.
Gravity is a fundamental force of nature that exists in the whole universe, not just on Earth. It is a force that acts between any two objects that have mass. This means that statement "C. Gravity is a force that pulls two objects together" and "D. Gravity exists between two objects that have mass" are both true. Gravity plays a significant role in the functioning of our solar system. The sun's gravitational force acts on the planets, including Earth, keeping them in their orbits. Similarly, Earth's gravitational force attracts objects towards its center, giving weight to objects on its surface. Gravity is the force that holds Earth in orbit around the sun and is responsible for the planets' motion in the solar system. Gravity is a universal force that exists throughout the universe, acts between objects with mass, and plays a crucial role in celestial bodies' movements, including the interaction between Earth and the sun.
For such more questions on Gravity
https://brainly.com/question/18258780
#SPJ11
Assume Lake Erie contains 4.80 ✕ 1011 m3 of water, and assume the water's density is that of water at 20°C and 1 atm.
(a)
How much energy (in J) is required to raise the temperature of that volume of water from 11.2°C to 21.6°C?
(b)
How many years would it take to supply this amount of energy by using a power of 1,400 MW generated by an electric power plant?
.
For Part A, we can use the formula Q = mc(T'f - Ti) to calculate the energy required to raise the temperature of the water. Here, Q is the energy required, m is the mass of the water, c is the specific heat capacity of water at 20°C and 1 atm (4.184 J/g°C), T'f is the final temperature (21.6°C), and Ti is the initial temperature (11.2°C).
First, we need to find the mass of the water. Since density = mass/volume, we can rearrange the formula to get mass = density * volume. Plugging in the given values, we get:
mass = (998 kg/m^3) * (4.80 x 10^11 m^3) = 4.79 x 10^14 kg
Now, we can plug in the values into the formula above:
Q = (4.79 x 10^14 kg) (4.184 J/g°C) (21.6°C - 11.2°C) = 2.02 x 10^19 J
Therefore, it would require 2.02 x 10^19 J of energy to raise the temperature of Lake Erie from 11.2°C to 21.6°C.
For Part B, we can use the formula P = E/t to calculate the time required to supply the energy using a power of 1,400 MW. Here, P is the power in watts, E is the energy required in joules (which we found in Part A), and t is the time in seconds. Since we want the time in years, we can convert from seconds to years at the end by dividing by the number of seconds in a year (31,536,000 s).
First, we need to convert the power from MW to W:
P = 1,400 MW * (10^6 W/MW) = 1.4 x 10^9 W
Now, we can rearrange the formula to solve for t:
t = E / P = (2.02 x 10^19 J) / (1.4 x 10^9 W) = 1.44 x 10^10 s
Converting from seconds to years, we get:
t = 1.44 x 10^10 s / 31,536,000 s/year = 456.7 years (rounded to three significant figures)
Therefore, it would take approximately 457 years to supply the energy needed by using a power of 1,400 MW generated by an electric power plant.
pls help me solve dis
Answer:
9 Ω
Explanation:
The following data were obtained from the question:
Resistor 1 (R1) = 3 Ω
Resistor 2 (R2) = 3 Ω
Resistor 3 (R3) = 3 Ω
Resistor 4 (R4) = 3 Ω
Resistor 5 (R5) = 3 Ω
Resistor 6 (R6) = 3 Ω
Resistor 7 (R7) = 3 Ω
Resistor 8 (R8) = 3 Ω
Resistor 9 (R9) = 3 Ω
Resistor 10 (R10) = 3 Ω
Resistor 11 (R11) = 3 Ω
Resistor 12 (R12) = 3 Ω
Equivalent Resistance (R) =.?
From the above diagram,
Resistor 1, 2, 3, 4, 5 and 6 are in series connection and in parralle connections with Resistor 7, 8, 9, 10, 11 and 12 which are also in series connection.
Thus we shall determine the equivalent resistance of Resistor 1, 2, 3, 4, 5 and 6
This is illustrated below:
Resistance Ra = R1 + R2 + R3 + R4 + R5 + R6
Ra = 3 + 3 + 3 + 3 + 3 + 3
Ra = 18 Ω
Next, we shall determine the equivalent resistance of Resistor 7, 8, 9, 10, 11 and 12.
This is illustrated below:
Resistance Rb = R7 + R8 + R9 + R10 + R11 + R12
Rb = 3 + 3 + 3 + 3 + 3 + 3
Rb = 18 Ω
Thus, Ra and Rb are in parallel connections. The equivalent resistance between A and B can be obtained as shown below :
Ra = 18 Ω
Rb = 18 Ω
Equivalent resistance R =?
1/R = 1/Ra + 1/Rb
1/R = 1/18 + 1/18
1/R = 2/18
1/R = 1/9
Invert
R = 9 Ω
Therefore, the equivalent resistance between A and B is 9 Ω.
Thallium-201 is a radioisotope used in brain scans. If the recommended dose is 3.0 mCi and a vial contains 60. mCi in 50. mL , how many milliliters should be injected?
2.5 mL of Thallium-201 should be injected to administer a recommended dose of 3.0 mCi.
Thallium-201 is a radioisotope that is used in brain scans to detect brain cancer. It is used in nuclear medicine as a radiopharmaceutical. The recommended dose for Thallium-201 is 3.0 mCi. If a vial of Thallium-201 contains 60. mCi in 50. mL, we can determine the number of milliliters that should be injected by using proportionality.A proportion can be used to compare two ratios and solve for an unknown value. For example, if x is the unknown value we are trying to solve for and a/b and c/d are two ratios that are equal, we can write a proportion:
a/b = c/d.
Cross-multiplying gives us the equation
ad = bc.
This formula can be used to solve for the unknown value x. For this problem, we can use a proportion to solve for the number of milliliters that should be injected. Let x be the number of milliliters that should be injected. Then we have the following ratio:
3.0 mCi / x mL = 60. mCi / 50. mL
To solve for x, we can cross-multiply:
3.0 mCi * 50. mL = 60. mCi * x mL150. mCi mL = 60. mCi x mCx = (150. mCi mL) / (60. mCi) x = 2.5 mL
For more question Thallium
https://brainly.com/question/31007911
#SPJ8
3. Observe: An organelle is a cell structure that performs a specific function. Observe the samples below under the highest magnification. Click the Show labels checkbox to label the organelles. List the organelles and approximate size of the cells in each sample.
Organelles are specialized structures within cells that perform specific functions, such as energy production, protein synthesis, and waste removal.
Some examples of organelles include mitochondria, which produce energy for the cell, and ribosomes, which are involved in protein synthesis.
The size of cells can vary widely depending on the organism and the type of cell. For example, human cells can range from 10 to 30 micrometers in diameter, while bacterial cells are typically much smaller, ranging from 1 to 5 micrometers in diameter.
In summary, organelles are specialized structures within cells that perform specific functions, and the size of cells can vary widely depending on the organism and the type of cell.
To know more about organelles, visit:
https://brainly.com/question/2135497
#SPJ1
what is the acceleration of a 10 kg mass pushed by a 5 newton force?
Answer:
0.5 m/s²
Explanation:
F=ma
F is force
m is mass
a is acceleration
F=ma
5 = 10 x a
a = 5/10
a = 0.5 m/s²
Find the Magnitude of the resultant vector (the actual
path of the boat).
The picture is a little blurry, so here are the stats:
Velocity of the boat is 0.75 m/s
Velocity of the river is 1.2 m/s
The magnitude of the resultant vector, representing the actual path of the boat, is approximately 1.42 m/s.
To find the magnitude of the resultant vector, we need to consider the boat's velocity and the velocity of the river. The boat's velocity is given as 0.75 m/s, and the river's velocity is given as 1.2 m/s.
Since the boat is moving in a river, we can think of the boat's velocity as a combination of two velocities: its own velocity and the velocity of the river. The resultant vector represents the actual path of the boat, considering both velocities.
To calculate the resultant vector, we can use vector addition. The magnitude of the resultant vector can be found by taking the square root of the sum of the squares of the boat's velocity and the river's velocity. Mathematically, we have:
Resultant magnitude = √(boat velocity^2 + river velocity^2)
Plugging in the given values, we have:
Resultant magnitude = √(0.75^2 + 1.2^2)
= √(0.5625 + 1.44)
= √2.0025
≈ 1.42 m/s
For more such questions on resultant vector,click on:
https://brainly.com/question/110151
#SPJ11
12. By convention (agreement of the scientific community for consistency)
magnetic field lines...
A. always start on the north pole and terminate (end) on the South Pole
B. start at infinity and point toward each pole
C. start at each pole and go outward
D. always start on the south pole and terminate (end) on the north pole.
Answer:
. always start on the north pole and terminate (end) on the South Pole
Explanation:
A pair of forceps used to hold a thin plastic rod firmly is shown in (Figure 1). If the thumb and finger each squeeze with a force FT=FF= 16.0 N , what force do the forceps jaws exert on the plastic rod? Express your answer to three significant figures and include the appropriate units. F1 =
9. Which of these tissues hold bones together at movable joints? O ligaments O cartilage O tendons O disks
Answer:
The tissue that holds bones together at movable joints is ligaments. Ligaments are strong, fibrous connective tissues that connect bones to other bones, providing stability and limiting excessive movement at the joints. They help to maintain the proper alignment and function of the joints while allowing for controlled movement.
Explanation:
The tissue that holds bones together at movable joints is ligaments. Ligaments are strong, fibrous connective tissues that connect bones to other bones, providing stability and limiting excessive movement at the joints. They help to maintain the proper alignment and function of the joints while allowing for controlled movement.
Answer:
The answer is ligaments!
Explanation:
Hope this helps!! :)
Which items in this image are electrically conductive?
Check all that apply
the power lines themselves
the wooden pole that supports the lines
the rubber soles on the worker's boots
the metal tools the worker uses
the wooden ladder leaning against the lines
all except the rubber boots.
The answers should be The power lines themselves and The metal tools the worker uses (the 1st and 4th choices).
(For anyone curious, the image I attached to this answer is the image given for this problem.)
Very Important, I need the answer
Answer:
A
Explanation:
A constant velocity means the position graph has a constant slope. It's a straight line sloping up.
Find the acceleration due to gravity on planet Fergie which has a mass of 6.23 * 10^23 kg and a radius of 5.79* 10^7 m
Answer:
The acceleration due to gravity on the planet Fergie is 0.0123 m/s^2.
Explanation:
We want to find the acceleration due to gravity on the planet Fregie. Let it be g m/s^2.
Now, the acceleration due to gravity is defined through the following equation:
\(mg = GMm/R^2\)
where m is the mass of an object on the surface of the planet, M is the mass of the planet, R is the radius of the planet, and G is the universal Gravitational constant.
Subsituting values for M = 6.23*10^23, R = 5.79*10^7, G = 6.67*10^(-11), we get
g = 0.0123 m/s^2.
Thus the acceleration due to gravity on the planet Fergie is 0.0123 m/s^2.
To know more about the acceleration due to gravity, see
https://brainly.com/question/88039
can some one help me with this so i can bring my grade up
Answer:
a
Explanation:
90 V
R₁
60
R2
30
R3
30
Based on the circuit above, what would be the current through the R3 resistor?
In the parallel combination, the current through R3 is 3 A. In the series combination, the current through R3 is 0.75 A.
To determine the current through resistor R3 in both the parallel and series combinations, we need to apply Ohm's Law and the appropriate formulas for calculating total resistance and current in each configuration.
First, let's consider the parallel combination:
In a parallel combination, the voltage across each resistor is the same. Therefore, the voltage across R3 is also 90 V.
Using Ohm's Law (V = I × R), we can calculate the current flowing through R3 in the parallel combination:
I_parallel = V / R3
= 90 V / 30 Ω
= 3 A
So, in the parallel combination, the current through R3 is 3 A.
Now, let's consider the series combination:
In a series combination, the total resistance is the sum of the individual resistances:
R_total = R1 + R2 + R3
= 60 Ω + 30 Ω + 30 Ω
= 120 Ω
To find the current through the series combination, we can use Ohm's Law:
I_series = V / R_total
= 90 V / 120 Ω
= 0.75 A
Therefore, in the series combination, the current through R3 is 0.75 A.
For more such questions on parallel combination visit:
https://brainly.com/question/15121871
#SPJ11
Note the complete questions is User
90 V R₁=60 R2= 30, R3 = 30
Based on the circuit above, what would be the current through the R3 resistor in parallel and in series combinantion.
which action would a chemist most likely take to determine how substances in a fuel affect the types
A 1.0-kg object moving 9.0 m/s collides with a 2.0-kg object moving 6.0 m/s in a direction that is perpendicular to the initial direction of motion of the 1.0-kg object. The two masses remain together after the collision, and this composite object then collides with and sticks to a 3.0-kg object. After these collisions, the final composite (6.0-kg) object remains at rest. What was the speed of the 3.0-kg object before the collisions
Answer:
v₃ = - (3 i ^ + 4 j ^) m / s
v₃ = 5 m / s, θ = 233º
Explanation:
This is a momentum problem. Let us form a system formed by the three objects so that the forces during the collisions have been internal and the moment is conserved.
Let's start working with the first two objects. As each object moves in a different direction let's work with the components in an xy coordinate system
X axis
initial instant. Before the shock
p₀ₓ = m₁ v₁₀ + 0
final instant. After the crash
p_{fx} = (m1 + m2) vₓ
the moment is preserved
p₀ₓ = p_{fx}
m₁ v₀₁ = (m₁ + m₂) vₓ
vₓ = \(\frac{m_1}{m_1+m_2} \ v_{o1}\)
Y axis
initial instant
p_{oy} = 0 + m₂ v₀₂
final moment
p_{fy} = (m₁ + m₂) v_y
the moment is preserved
p_{oy} = p_{fy}
m₂ v₀₂ = (m₁ + m₂) v_y
v_y = \(\frac{m_2}{m_1 +m_2 } \ v_{o2}\)
We already have the speed of the set of these two cars, now let's work on this set and vehicle 3
X axis
initial instant
p₀ₓ = (m₁ + m₂) vₓ + m₃ v₃ₓ
final instant
p_{fx} = 0
p₀ₓ = p_{fx}
(m₁ + m₂) vₓ + m₃ v₃ₓ = 0
v₃ₓ = \(- \frac{m_1+m_2 }{m_3} \ v_x\)
Y Axis
initial instant
p_{oy} = (m₁ + m₂) v_y + m₃ v_{3y}
final moment
p_{fy} = 0
p_{oy} = p_{fy}
(m₁ + m₂) v_y + m₃ v_{3y} = 0
v_{3y} = \(- \frac{m_1+m_2}{m_3} \ v_y\)
now we substitute the values of the speeds
v₃ₓ = \(- \frac{m_1+m_2}{m_3} \ \frac{m_1}{m_1+m_2} \ v_{o1}\)
v₃ₓ = \(- \frac{m_1}{m_3} \ v_{o1}\)
v_{3y} = \(- \frac{m_1+m_2}{m_3} \ \frac{m_2}{m_1+m_2} \ v_{o2}\)
v_{3y} = \(- \frac{m_2}{m_3} \ v_{o2}\)
let's calculate
v₃ₓ = - ⅓ 9
v₃ₓ = - 3 m / s
v_{3y} = - ⅔ 6
v_{3y} = - 4 m / s
therefore the speed of vehicle 3 is
v₃ = - (3 i ^ + 4 j ^) m / s
It can also be given in the form of modulus and angles using the Pythagorean theorem
v₃ = \(\sqrt{v_{3x}^2 + v_{3y}^2}\)
v₃ = \(\sqrt{3^2+4^2}\)
v₃ = 5 m / s
let's use trigonometry for the angle
tan θ' = \(\frac{v_{3y}}{v_{3x}}\)
θ' = tan⁻¹ (\frac{v_{3y}}{v_{3x}})
θ' = tan⁻¹ (4/3)
θ' = 53º
That the two speeds are negative so this angle is in the third quadrant, measured from the positive side of the x axis
θ = 180 + θ'
θ = 180 +53
θ = 233º
How do you calculate the maximum angle at which an object will not slip on an incline? I know that it's arctan(μ) but why? Where does that come from? Thank you in advance!
The maximum angle at which an object will not slip on an incline can be calculated using the coefficient of friction (μ).
Balance of forces on an inclineWhen an object is on an inclined plane, there are two main forces acting on it: the gravitational force pulling it downward (mg) and the normal force (N) exerted by the inclined plane perpendicular to its surface. Additionally, there is a frictional force (F) acting parallel to the surface of the incline.
To prevent slipping, the frictional force must be equal to or greater than the force component pulling the object down the incline. This force component is given by the equation F = mg sin(θ), where θ is the angle of inclination.
The maximum frictional force that can be exerted between two surfaces is given by the equation F = μN, where μ is the coefficient of friction.
For an object not to slip, the maximum frictional force (F) must be equal to or greater than the force component pulling the object down the incline (mg sin(θ)). Therefore, we have:
F ≥ mg sin(θ)
Substituting F = μN, we get:
μN ≥ mg sin(θ)
Since N = mg cos(θ) (the normal force is equal to the component of the gravitational force perpendicular to the incline):
μmg cos(θ) ≥ mg sin(θ)
μ cos(θ) ≥ sin(θ)
Now, divide both sides of the equation by cos(θ):
μ ≥ tan(θ)
Taking the inverse tangent (arctan) of both sides, we get:
θ ≤ arctan(μ)
Therefore, the maximum angle at which an object will not slip on an incline is given by θ = arctan(μ).
More on inclined planes can be found here: https://brainly.com/question/29360090
#SPJ1
Fred the fisherman has been told that, because
of refraction, a fish in water will
appear
nearer the water's surface than it really is.
to be
He draws a diagram to try to work this out.
I think it will look lower, not higher.' he says.
Explain what Fred has done wrong.
Due to light refraction, any fish in the water can see a fisherman on the bank a little more clearly than one might anticipate. When the light hits the water's surface, it “bends” down by around 13 degrees, leaving the image. Thus option A is correct.
What refraction affect the fisherman?When it reaches the surface, light emanating from the fish refracts (changes direction). When viewed from above the water, a fish appears to be closer to the surface than it actually is.
Therefore, Fred the fisherman has been told that, because of refraction, a fish in water will appear.
Learn more about fisherman here:
https://brainly.com/question/10776600
#SPJ1
When five capacitors with equal capacitances are connected in series, the equivalent capacitance of the combination is 6.43 mF. The capacitors are then reconnected so that a parallel combination of two capacitors is connected in series with a parallel combination of three capacitors.
Determine the equivalent capacitance equiv of this combination in millifarads.
The equivalent capacitance of the five capacitors in series is given 6.43 mF. After they reconnected as described the equivalent capacitance will changes to 7.71 mF.
What is capacitance?Capacitance is the ability to store charge in a dielectric device called capacitor. The equivalent capacitance of five capacitor in series is written as: their charges will be equal.
\(\frac{1}{Ceq} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \frac{1}{C}\)
1/ 6.43 = 5/C
C = 32.15 mF.
Now the equivalent capacitance of two capacitors in parallel is
C1 = C + C = 2C
Capacitance for three capacitors in parallel is:
C2 = C + C + C = 3C
These two are in series and can be written now as:
1/Ceq = 1/C1 + 1/C2
= 1/2C + 1/3C
= (2C + 3C) / (2C × 3C)
= 5C/ 6C²
Ceq = 6/5 C
= 7.71 mF.
Thus, the capacitance of the reconnected circuit will be 7.71 mF.
To find more on capacitance, refer here:
https://brainly.com/question/14746225
#SPJ1
Power can be defined as?
A. The distance over which work has done
B. How much work can be done in a given time
C. All the work in an given area
D. The energy required to do work
( Last question was wrong according to the test I took)
During the Apollo Moon missions, astronauts were concerned about the
effects of Newton's third law of motion when:
A. they detected incoming space debris, because the inertia of the
debris could damage their ship.
B. they reentered Earth's atmosphere, because they were carrying
heavy Moon rocks
C. They ejected waste water, because they were concerned that it would push them off course.
D. they took off from Earth, because a large force was required to generate large acceleration
Answer:
C
Explanation:
Option C is correct since it is the effect of Newton’s third law.
Which of the following elements is more reactive than the
Answer:
you need to attach a picture so I can answer it
Hector stretches a spring with a spring constant of 3 N/m until it is extended by 50 cm. What is the elastic potential energy stored by the spring?
The elastic potential energy stored in the spring is 0.375 J.
The formula for elastic potential energy is:
E = 1/2 * k * x^2
where:
* E is the elastic potential energy in Joules
* k is the spring constant in N/m
* x is the distance the spring is stretched or compressed from its equilibrium position in meters
In this problem, we have:
* k = 3 N/m
* x = 0.5 m (50 cm)
Substituting these values into the formula, we get:
E = 1/2 * 3 * 0.5^2 = 0.375 J
Therefore, the elastic potential energy stored in the spring is 0.375 J.
which of the following evaluation tools for documenting direct observations is the least subjective?
Least subjective evaluation tool for documenting direct observation is anecdotal record.
What do you mean by evaluation tool?There are several evaluation tools that can be used to assess the quality and effectiveness of documentation in physics. Some examples include:
Peer review: This involves having other experts in the field review the documentation and provide feedback on its accuracy, clarity, and completeness.
User testing: This involves having users test the documentation and provide feedback on its usability and effectiveness in helping them understand and use the information.
Metrics: This involves measuring various aspects of the documentation, such as readability, accuracy, and completeness, and using these metrics to evaluate its quality.
Surveys: Surveys can be used to gather feedback from users on the documentation, including their satisfaction with the information provided and how well it met their needs.
Heuristic evaluation: This is an evaluation method which uses a set of predetermined heuristics or guidelines to evaluate the usability and user experience of a product or service.
Cognitive walkthrough: This is an evaluation method in which a user is observed as they use the documentation, and the evaluator looks for any issues that might make it difficult for them to understand and use the information.
To know more about anecdotal visit:
https://brainly.com/question/17675790
#SPJ4